aboutsummaryrefslogtreecommitdiffstats
path: root/AoC2022/22/solver.lisp
blob: 362c0170d26d73c994b74273cbee5c2c6a3b57ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
(ql:quickload '(fiveam uiop arrows trivia))

(defun parse-instructions (str &optional (start 0))
  (multiple-value-bind (action str-pos)
      (case (aref str start)
        (#\R 'right)
        (#\L 'left)
        (t (parse-integer str :start start :junk-allowed t)))
    (let ((next (or str-pos (1+ start))))
      (if (= next (length str))
          (list action)
          (cons action (parse-instructions str next))))))

(defun create-field (filename)
  (let* ((data (uiop:read-file-lines filename))
         (map (butlast data 2))
         (instructions (car (last data)))
         (rows (length map))
         (columns (reduce (lambda (a r) (max a (length r))) map :initial-value 0))
         (field (make-array (list rows columns) :initial-element nil)))
    (loop for row in map
          for i from 0
          do (loop for entry across row
                   for j from 0
                   do (setf (aref field i j)
                            (ecase entry
                              (#\. 'free)
                              (#\# 'wall)
                              (#\Space nil)))))
    (values field (parse-instructions instructions))))

(defstruct state
  x-pos y-pos direction)

(defun wrap-step (state field)
  (destructuring-bind (height width) (array-dimensions field)
    (with-slots (direction x-pos y-pos) state
      (destructuring-bind (new-x new-y)
          (ecase direction
            (^ (list x-pos (mod (1- y-pos) height)))
            (v (list x-pos (mod (1+ y-pos) height)))
            (> (list (mod (1+ x-pos) width) y-pos))
            (< (list (mod (1- x-pos) width) y-pos)))
        (let ((new-state (make-state :x-pos new-x :y-pos new-y :direction direction)))
          (if (aref field new-y new-x)
              new-state
              (wrap-step new-state field)))))))

(defun new-direction (current-direction turn &optional (directions #(^ > v <)))
  (svref directions
         (mod
          (+
           (ecase turn
             (left -1)
             (right 1))
           (position current-direction directions))
          4)))

(defun walk (field state steps advance-fn)
  (if (zerop steps)
      state
      (let ((new-state (funcall advance-fn state field)))
        (with-slots (x-pos y-pos) new-state
            (ecase (aref field y-pos x-pos)
              (free (walk field new-state (1- steps) advance-fn))
              (wall state))))))

(defun traverse (field instructions origin advance-fn)
  (let ((state (copy-structure origin)))
    (dolist (move instructions state)
      (if (numberp move)
          (setf state (walk field state move advance-fn))
          (setf (state-direction state) (new-direction (state-direction state) move))))))

(defun decode-state (state)
  (with-slots (x-pos y-pos direction) state
    (+ (* 1000 (1+ y-pos))
       (* 4 (1+ x-pos))
       (ecase direction
         (> 0)
         (v 1)
         (< 2)
         (^ 3)))))

(defun get-start (field)
  (loop for i from 0
        until (aref field 0 i)
        finally (return i)))

(defun solver (filename advance-fn)
  (multiple-value-bind (field instructions) (create-field filename)
    (decode-state
     (traverse field instructions (make-state :x-pos (get-start field) :y-pos 0 :direction '>) advance-fn))))

;;; part 2
;;; Cube face layout
;;;   1
;;; 234
;;;   56
;;; face coords
;;; 1=2 0
;;; 2=0 1
;;; 3=1 1
;;; 4=2 1
;;; 5=2 2
;;; 6=3 2

(defparameter +face-label+
  '((1 . (2 0))
    (2 . (0 1))
    (3 . (1 1))
    (4 . (2 1))
    (5 . (2 2))
    (6 . (3 2))))


(defun coord->face (x-face y-face)
  (car (rassoc (list x-face y-face) +face-label+ :test #'equal)))

(defun face->coord (face)
  (cdr (assoc face  +face-label+ :test #'eq)))

(defun reduced-coords (state face-length)
  (with-slots (x-pos y-pos) state
    (multiple-value-bind (x-face x-coord)
        (floor x-pos face-length)
      (multiple-value-bind (y-face y-coord)
          (floor y-pos face-length)
        (list (coord->face x-face y-face) x-coord y-coord)))))

(defun place-state (face x y direction face-length)
  (destructuring-bind (x-face y-face) (face->coord face)
    (make-state :x-pos (+ x (* x-face face-length))
                :y-pos (+ y (* y-face face-length)) :direction direction)))

;; The one direction from each face
;; The transitions are symetric on the position operation
;; ↱→↴
;; ↑↱1→↴
;;⬐234↴|
;;||↳56↲
;;|↳→⬏↑
;;↳→→→⬏

(defun face-jump (face direction fl)
  "fl is face-length"
  (flet ((rot-ccw (x y) (list y  (- fl 1 x)))
         (rot-cw  (x y) (list (- fl 1 y) x))
         (cross-x (x y) (list (- fl 1 x) y))
         (cross-y (x y) (list x  (- fl 1 y)))
         (compose (&rest funcs)
           (reduce (lambda (f g)
                     (lambda (&rest args)
                       (apply f (apply g args))))
                   funcs)))
    (ecase face
      (1 (case direction
           (> (list 6 '< (compose #'rot-cw #'rot-cw #'cross-x)))
           (< (list 3 'v (compose #'rot-ccw #'cross-x)))
           (v (list 4 'v #'cross-y))
           (^ (list 2 'v (compose #'rot-cw #'rot-cw #'cross-y)))))
      (2 (case direction
           (> (list 3 '> #'cross-x))
           (< (list 6 '^ (compose #'rot-cw #'cross-x)))
           (v (list 5 '^ (compose #'rot-ccw #'rot-ccw #'cross-y)))
           (^ (list 1 'v (compose #'rot-cw #'rot-cw #'cross-y)))))
      (3 (case direction
           (> (list 4 '> #'cross-x))
           (< (list 2 '< #'cross-x))
           (v (list 5 '> (compose #'rot-ccw #'cross-y)))
           (^ (list 1 '> (compose #'rot-cw #'cross-y)))))
      (4 (case direction
           (> (list 6 'v (compose #'rot-cw #'cross-x)))
           (< (list 3 '< #'cross-x))
           (v (list 5 'v #'cross-y))
           (^ (list 1 '^ #'cross-y))))
      (5 (case direction
           (> (list 6 '> #'cross-x))
           (< (list 3 '^ (compose #'rot-cw #'cross-x)))
           (v (list 2 '^ (compose #'rot-cw #'rot-cw #'cross-y)))
           (^ (list 4 '^ #'cross-y))))
      (6 (case direction
           (> (list 1 '< (compose #'rot-ccw #'rot-ccw #'cross-x)))
           (< (list 5 '< #'cross-x))
           (v (list 2 '> (compose #'rot-ccw #'cross-y)))
           (^ (list 4 '< (compose #'rot-ccw #'cross-y))))))))

(defun cube-step (state face-length)
  (destructuring-bind (face x-coord y-coord) (reduced-coords state face-length)
    (with-slots (direction) state
      (let ((new-x (+ x-coord (case direction (< -1) (> 1) (t 0))))
            (new-y (+ y-coord (case direction (^ -1) (v 1) (t 0)))))
        (if (and
             (< -1 new-x face-length)
             (< -1 new-y face-length))
            (place-state face new-x new-y direction face-length)
            (destructuring-bind (new-face new-direction pos-fn) (face-jump face direction face-length)
              (destructuring-bind (new-x new-y) (funcall pos-fn x-coord y-coord)
                (place-state new-face new-x new-y new-direction face-length))))))))

(defun copy-clear-field (field)
  (destructuring-bind (height width) (array-dimensions field)
    (let ((new-field (make-array (list height width) :initial-element nil)))
      (loop for y below height
            do (loop for x below width when (aref field y x) do (setf (aref new-field y x) 'free)))
      new-field)))

(fiveam:test preparation
  (fiveam:is (eq 'v (new-direction '> 'right)))
  (fiveam:is (eq '< (new-direction '^ 'left)))
  (fiveam:is (equal
              (parse-instructions "10R5L5R10L4R5L5" )
              '(10 RIGHT 5 LEFT 5 RIGHT 10 LEFT 4 RIGHT 5 LEFT 5)))

  (fiveam:is (= 1 (coord->face 2 0)))
  (fiveam:is (= 6 (apply #'coord->face (face->coord 6)))))

;; (let* ((field (create-field "eg-in"))
;;        (face-length (floor (array-dimension field 0) 3)))
;;   (fiveam:is
;;    (equalp (place-state 2 3 0 'v 4)
;;            (cube-advance (place-state 1 0 0 '^ face-length) face-length))))

(fiveam:test around-cube
  (let ((field (copy-clear-field (create-field "eg-in")))
        (face-length 4))
    (labels ((advance-fn (state field)
               (declare (ignore field))
               (cube-step state face-length))
             (check (origin moves)
               (equalp origin
                       (traverse field moves
                                 origin #'advance-fn))))
      ;; around corners
      (dotimes (i 6)
        (let ((origin (place-state (1+ i) 0 0 '^ face-length)))
          (fiveam:is (equalp origin
                             (traverse field '(1 left 1 left 1 left)
                                       origin #'advance-fn)))))
      ;; walk all dirs straight
      (dolist (dir '(> v < ^))
        (fiveam:is (check (place-state 1 2 1 dir face-length) '(16)))))))

(fiveam:test solutions
  (fiveam:is (= 6032 (solver "eg-in" #'wrap-step)))
  (fiveam:is (= 159034 (solver "input" #'wrap-step)))
  ;part 2
  (fiveam:is (= 5031 (solver "eg-in" (lambda (state field) (declare (ignore field)) (cube-step state 4))))))

;; (solver "input" (lambda (state field) (cube-step state 50)))

;; (multiple-value-bind (field instructions) (create-field "input")
;;   (destructuring-bind (height width) (array-dimensions field)
;;     (let ((face-length (gcd height width)))
;;       (loop for x below (floor width face-length)
;;             nconc
;;             (loop for y below (floor height face-length)
;;                   when (aref field (* y face-length) (* x face-length))
;;                     collect (list x y)))

;;       )))

;; (multiple-value-bind (field instructions) (create-field "input")
;;     (let ((state (place-state 1 0 0 '> 4))
;;           (advance-fn (lambda (state) (cube-step state 4))))
;;       (dolist (move instructions)
;;         (if (numberp move)
;;             (setf state (walk field state move advance-fn))
;;             (setf (state-direction state) (new-direction (state-direction state) move))))
;;       (decode-state state)))