diff options
author | Óscar Nájera <hi@oscarnajera.com> | 2021-06-09 13:22:14 +0200 |
---|---|---|
committer | Óscar Nájera <hi@oscarnajera.com> | 2021-06-09 13:26:48 +0200 |
commit | dce57bb4982849044f20926f72f136e24acdd56e (patch) | |
tree | f1c85e4db42c8cf187ee3096d04d2a68c5c50fe4 | |
parent | b57b1b1afa7f359af5223e74a1e0c8a2b21c8b75 (diff) | |
download | programmingbitcoin-dce57bb4982849044f20926f72f136e24acdd56e.tar.gz programmingbitcoin-dce57bb4982849044f20926f72f136e24acdd56e.tar.bz2 programmingbitcoin-dce57bb4982849044f20926f72f136e24acdd56e.zip |
Start support of ECC points with field elements
-rw-r--r-- | ecc.hs | 112 |
1 files changed, 63 insertions, 49 deletions
@@ -1,28 +1,27 @@ -import Text.Printf +{-# LANGUAGE FlexibleInstances #-} -data FieldElement = - FieldElement - { number :: Int - , prime :: Int - } - deriving (Eq) +data FieldElement a = FieldElement + { number :: a + , prime :: a + } + deriving Eq -instance Show FieldElement where +instance (Num a, Show a) => Show (FieldElement a) where show a = "FieldElement_" ++ show (prime a) ++ " " ++ show (number a) -instance Num FieldElement where +instance Integral a => Num (FieldElement a) where (FieldElement a b) + (FieldElement c d) - | b /= d = error "Distinct Fields" + | b /= d = error "Distinct Fields" | otherwise = FieldElement (mod (a + c) b) b (FieldElement a b) * (FieldElement c d) - | b /= d = error "Distinct Fields" + | b /= d = error "Distinct Fields" | otherwise = FieldElement (mod (a * c) b) b abs a = a signum _ = 1 negate (FieldElement a b) = FieldElement (mod (b - a) b) b fromInteger _ = error "can't transform" -instance Fractional FieldElement where +instance (Integral a) => Fractional (FieldElement a) where recip a = a ^ (prime a - 2) fromRational _ = error "can't transform" @@ -33,63 +32,78 @@ assert x = x aa = let a = FieldElement 2 31 b = FieldElement 15 31 - in assert - (and - [ a + b == FieldElement 17 31 - , a /= b - , a - b == FieldElement 18 31 - ]) + in assert + ( (a + b == FieldElement 17 31) + && (a /= b) + && (a - b == FieldElement 18 31) + ) bb = let a = FieldElement 19 31 b = FieldElement 24 31 - in a * b + in a * b -data ECPoint +data ECPoint a = Infinity | ECPoint - { x :: Double - , y :: Double - , a :: Double - , b :: Double + { x :: a + , y :: a + , a :: a + , b :: a } - deriving (Eq) + deriving (Eq ) -instance Show ECPoint where +rmul :: Integral a => a -> FieldElement a -> FieldElement a +a `rmul` (FieldElement v p) = FieldElement (mod (a * v) p) p + +instance Show a => Show (ECPoint (FieldElement a)) where show Infinity = "ECPoint(Infinity)" - show p = printf "ECPoint(%f, %f)_%f_%f" (x p) (y p) (a p) (b p) + show p = "ECPoint_" ++ show (prime (x p)) ++ points ++ params + where + points = "(" ++ show (number (x p)) ++ ", " ++ show (number (y p)) ++ ")" + params = "a_" ++ show (number (a p)) ++ "|b_" ++ show (number (b p)) + -validECPoint :: ECPoint -> Bool +validECPoint :: (Eq a, Num a) => ECPoint a -> Bool validECPoint Infinity = True -validECPoint p = y p ^ 2 == x p ^ 3 + a p * x p + b p - -add :: ECPoint -> ECPoint -> ECPoint -add Infinity p = p -add p Infinity = p -add p q - | a p /= a q || b p /= b q = error "point not on same curve" - | x p == x q && y p /= y q = Infinity - | x p /= x q = new_point $ (y q - y p) / (x q - x p) - | x p == x q && y p == 0 = Infinity - | p == q = new_point $ (3 * x p ^ 2 + a p) / (2 * y p) - | otherwise = error "Unexpected case of points" - where - new_point slope = - let new_x = slope ^ 2 - x p - x q - new_y = slope * (x p - new_x) - y p - in ECPoint new_x new_y (a p) (b p) +validECPoint p = y p ^ 2 == x p ^ 3 + a p * x p + b p + +add :: (Eq a, Fractional a) => ECPoint a -> ECPoint a -> ECPoint a +add Infinity p = p +add p Infinity = p +add p q | a p /= a q || b p /= b q = error "point not on same curve" + | x p == x q && y p /= y q = Infinity + | x p /= x q = new_point $ (y q - y p) / (x q - x p) + | x p == x q && y p == 0 = Infinity + | p == q = new_point $ (3 * x p ^ 2 + a p) / (2 * y p) + | otherwise = error "Unexpected case of points" + where + new_point slope = + let new_x = slope ^ 2 - x p - x q + new_y = slope * (x p - new_x) - y p + in ECPoint new_x new_y (a p) (b p) cc = let a = ECPoint 3 (-7) 5 7 b = ECPoint 18 77 5 7 c = ECPoint (-1) (-1) 5 7 - in ( validECPoint a + in ( validECPoint a , validECPoint b , validECPoint c , a /= b , a == a - , add Infinity a - , add a (ECPoint 3 7 5 7) + , add Infinity a + , add a (ECPoint 3 7 5 7) , add (ECPoint 3 7 5 7) c - , add c c) + , add c c + ) + +dd = + let prime = 223 + a = FieldElement 0 prime + b = FieldElement 7 prime + x = FieldElement 192 prime + y = FieldElement 105 prime + point = ECPoint x y a b + in validECPoint point |