(ql:quickload '(fiveam)) (defpackage :day21 (:use :cl :fiveam)) (in-package :day21) ;;22:55 ;;23:32 (defun find-start (field) (destructuring-bind (rows cols) (array-dimensions field) (loop for row below rows do (loop for col below cols do (when (eq (aref field row col) #\S) (return-from find-start (list row col))))))) (defun solver1 (lines step-count) (let* ((field (make-array (list (length lines) (length (car lines))) :initial-contents lines)) pending (end-positions (make-hash-table :test #'equal)) (visited (make-hash-table :test #'equal)) (start (find-start field))) (destructuring-bind (rows cols) (array-dimensions field) (push (cons step-count start) pending) (setf (gethash start visited) step-count) (loop while pending for (steps-left row col) = (pop pending) ;; an even number of steps left means it is possible ;; to go and return to the place in the steps available ;; Thus count to the solution. when (evenp steps-left) do (setf (gethash (list row col) end-positions) t) unless (zerop steps-left) do (loop for (dr dc) in '((-1 0) (0 -1) (1 0) (0 1)) for nr = (+ row dr) for nc = (+ col dc) for new-pos = (list nr nc) when (and (< (gethash new-pos visited -1) (1- steps-left)) (< -1 nr rows) (< -1 nc cols) (not (eq #\# (aref field nr nc)))) do (setf (gethash new-pos visited) (1- steps-left)) (push (cons (1- steps-left) new-pos) pending)))) (hash-table-count end-positions))) (test solutions (is (= 16 (solver1 (uiop:read-file-lines "eg-in") 6))) (is (= 3574 (solver1 (uiop:read-file-lines "input") 64)))) (defun solver2 (lines step-count) (let* ((field (make-array (list (length lines) (length (car lines))) :initial-contents lines)) pending (end-positions (make-hash-table :test #'equal)) (visited (make-hash-table :test #'equal)) (start (find-start field))) (destructuring-bind (rows cols) (array-dimensions field) (push (cons step-count start) pending) (setf (gethash start visited) step-count) (loop while pending for (steps-left row col) = (pop pending) ;; an even number of steps left means it is possible ;; to go and return to the place in the steps available ;; Thus count to the solution. when (evenp steps-left) do (setf (gethash (list row col) end-positions) t) unless (zerop steps-left) do (loop for (dr dc) in '((-1 0) (0 -1) (1 0) (0 1)) for nr = (+ row dr) for nc = (+ col dc) for new-pos = (list nr nc) when (and (< (gethash new-pos visited -1) (1- steps-left)) (not (eq #\# (aref field (mod nr rows) (mod nc cols))))) do (setf (gethash new-pos visited) (1- steps-left)) (push (cons (1- steps-left) new-pos) pending)))) (hash-table-count end-positions))) (solver2 (uiop:read-file-lines "eg-in") 6) (solver2 (uiop:read-file-lines "eg-in") 10) (solver2 (uiop:read-file-lines "eg-in") 50) (solver2 (uiop:read-file-lines "eg-in") 100) ;; (time (solver2 (uiop:read-file-lines "eg-in") 500)) (defun solve-part2 () (let ((x 202300)) (multiple-value-bind (a b c) (solve-quadratic 3719 33190 91987) (+ (* a x x) (* b x) c)))) (defun solve-quadratic (r-one r-two r-three) ;; The covered area grows proportional to the square of steps taken. ;; The requested numbers of steps (= 26501365 (+ (* 202300 131) 65)) ;; The function that takes to the the edge of the field g(x) = 65 + x * 131 ;; The standard quadratic function q(x) = a*x^2 + b*x + c ;; r₁ = q o g (0) = c ;; r₂ = q o g (1) = a + b + c ;; r₃ = q o g (2) = 4a + 2b + c ;; ;; solving is simple ;; a = (r₃ - 2r₂ + r₁) / 2 ;; b = (4r₂ - 3r₁ - r₃) / 2 ;; c = r₁ (values (/ (+ (- r-three (* 2 r-two)) r-one) 2) (/ (- (* 4 r-two) (* 3 r-one) r-three) 2) r-one)) (test sols (loop for steps in (list 65 (+ 65 131) (+ 65 (* 131 2))) for result in '(3719 33190 91987) do (is (= result (solver2 (uiop:read-file-lines "input") steps)))) (is (= 600090522932119 (solve-part2))))