(ql:quickload '(fiveam)) (defpackage :day21 (:use :cl :fiveam :alexandria)) (in-package :day21) ;;22:55 ;;23:32 (defun find-start (field) (destructuring-bind (rows cols) (array-dimensions field) (loop for row below rows do (loop for col below cols do (when (eq (aref field row col) #\S) (return-from find-start (list row col))))))) (defun read-field (filename) (let* ((lines (uiop:read-file-lines filename))) (make-array (list (length lines) (length (car lines))) :initial-contents lines))) (defun solver (field boundedp &rest step-counts) (let* (pending (visited (make-hash-table :test #'equal)) (start (find-start field)) (step-count (car (last step-counts))) (end-positions (mapcar (lambda (s) (cons (- step-count s) (make-hash-table :test #'equal))) step-counts))) (destructuring-bind (rows cols) (array-dimensions field) (push (cons step-count start) pending) (setf (gethash start visited) step-count) (loop while pending for (steps-left row col) = (pop pending) ;; an even number of steps left means it is possible ;; to go and return to the place in the steps available ;; Thus count to the solution. do (dolist (ep end-positions) (destructuring-bind (check-point . tracker) ep (let ((mark-left (- steps-left check-point))) (when (and (not (minusp mark-left)) (evenp mark-left)) (setf (gethash (list row col) tracker) t))))) unless (zerop steps-left) do (loop for (dr dc) in '((-1 0) (0 -1) (1 0) (0 1)) for nr = (+ row dr) for nc = (+ col dc) for new-pos = (list nr nc) when (and (< (gethash new-pos visited -1) (1- steps-left)) (if boundedp (and (< -1 nr rows) (< -1 nc cols)) t) (not (eq #\# (aref field (mod nr rows) (mod nc cols))))) do (setf (gethash new-pos visited) (1- steps-left)) (push (cons (1- steps-left) new-pos) pending)))) (mapcar (compose #'hash-table-count #'cdr) end-positions))) (defun solve-quadratic (r-one r-two r-three) ;; The covered area grows proportional to the square of steps taken. ;; The requested numbers of steps (= 26501365 (+ (* 202300 131) 65)) ;; The function that takes to the the edge of the field g(x) = 65 + x * 131 ;; The standard quadratic function q(x) = a*x^2 + b*x + c ;; r₁ = q o g (0) = c ;; r₂ = q o g (1) = a + b + c ;; r₃ = q o g (2) = 4a + 2b + c ;; ;; solving is simple ;; a = (r₃ - 2r₂ + r₁) / 2 ;; b = (4r₂ - 3r₁ - r₃) / 2 ;; c = r₁ (values (/ (+ (- r-three (* 2 r-two)) r-one) 2) (/ (- (* 4 r-two) (* 3 r-one) r-three) 2) r-one)) (defun solve-part2 (places) (let ((x 202300)) (multiple-value-bind (a b c) (apply #'solve-quadratic places) (+ (* a x x) (* b x) c)))) (test solutions (is (= 16 (car (solver (read-field "eg-in") t 6)))) (is (= 3574 (car (solver (read-field "input") t 64)))) (mapc (lambda (solution calculated) (is (= solution calculated))) '(16 50 1594 6536 26538 59895) (solver (read-field "eg-in") nil 6 10 50 100 200 300)) (let ((results '(3719 33190 91987)) (places (solver (read-field "input") nil 65 (+ 65 131) (+ 65 (* 131 2))))) (mapc (lambda (solution calculated) (is (= solution calculated))) results places) (is (= 600090522932119 (solve-part2 results)))))